TOTAL SYNTHESIS OF THIENAMYCIN ANALOGS. II

SYNTHESIS OF 2-ALKYL AND 2-ARYL THIENAMYCIN NUCLEI

L. Cama^{*} and B. G. Christensen

Merck Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065

A new general synthesis leading to 2-alkyl and 2-aryl-l-carba-2-penem-3-carboxylic acids involves the preparation of a key thiolester intermediate 3. This is reacted with Me₂CuLi or $(C_{H_5})_2$ MgCuX to give the corresponding methyl or phenyl ketone which undergoes a Wittig reaction to give the desired penems, which can be deblocked photolytically or by hydrogenolysis to give acids with good antibacterial activity.

Recently we reported¹ the total synthesis of the thienamycin nucleus 6 (R=H), involving a Wittig reaction for ring closure. We now wish to report an extension of this synthesis, which provides a general method for synthesizing 2-substituted 1-carba-2-penems. The synthesis involves the preparation of ketone intermediate 4 via the reaction of easily available lithium or magnesium aryl or alkyl cuprate on a thioester. These ketones (4) undergo a Wittig cyclization to give 2-alkyl and 2-aryl substituted analogs of thienamycin (1),² making available a large number of such analogs. The aryl analog 6b shows activity superior to that of the nucleus 6 (R = H).

Oxidation of 1-(o-nitrobenzyloxycarbonylmethyltriphenylphosphoranyl)-4-(2-hydroxy-ethyl)-2-azetidinone (2)¹ using a small excess of Jones reagent in acetone at 0°, provided the corresponding acid which without purification was converted to the acid chloride (excess oxalyl chloride, CH_2CI_2). Treatment of the crude acid chloride with 1.5 eq C_6H_5SH and pyridine in CH_2CI_2 , 0°, 1/2 h gave the thiolester 3 (66% from 2) after chromatography on silica gel, 50% EtOAc/ C_6H_6 . IR 1740 (β -lactam), 1700 (thiolester), 1625 (ester).

Thiolester 3 is a key intermediate which on reaction with a lithium alkyl or aryl cuprate or a magnesium alkyl or aryl cuprate in ether/THF,³ provides the corresponding alkyl or aryl ketones 4, which can be cyclized by heating in xylene to the corresponding 2-alkyl- or 2-aryl-l-carba-2-penems 5. This general sequence is exemplified by the preparation of sodium l-carba-2-methyl-2-penem-3-carboxylate 6a and sodium l-carba-2-phenyl-2-penem-3-carboxylate 6b.

Treatment of thiolester 3 with 2 eq of Me_2CuLi in 1:1 THF/Et₂O at -50° to -20° for 20 min and a further 5 min at -20° followed by NH_4Cl quench gave 28% of the methyl ketone 4a. IR^4 1740 (β -lactam), 1710 (ketone), 1620 (ester). NMR 2.16 s (CH_2C); after chromatography on silica gel (EtOAc elution), and 17% of recovered starting material.

Heating 4a in xylene in the presence of a trace of pyridine, 45 min, gave the carbapenem 5a in 25% yield. IR 1775 (β -lactam), 1720 (ester), 1630 (C=C). NMR (100 MHz) 7.3-8.2 (m, ArH), 5.72 (ABq, CH₂-Ar), 4.2 (m, C-5 H), 3.5 (dd, α C-6 H, J₅₋₆ = 5, J_{gem} = 16), 2.92 (dd, β C-6 H, J₅₋₆ = 2.8, J_{gem} = 16), 2.86 (C-1 H, d, J = 10), 2.18 (s, CH₃-). The p-nitrobenzyl ester of 4a has been prepared by an entirely different route which does not comprise a general route to these ketones. Moreover, no attempts to deblock the p-nitrobenzyl-2-methyl-1-carba-2-penem-3-carboxylate obtained by cyclization of that ketone, are reported.⁵ Photolysis of 5a (degassed dioxane/water 50%, pH 7 phosphate buffer 0.5M, 5%, 1 hr) gave the desired 6a, 15%.⁶ UV λ H₂O 262 (NH₂OH extinguishable).

Treatment of 3 with 2 eq of $(C_6H_5)_2MgCuX$ (prepared from 4 eq C_6H_5MgBr and 2 eq CuI in Et₂O/THF 1:1, -15°, 20 min) at -15° to 0° for 45 min gave the ketone **4b** in 66% yield after chromatography on silica gel (50% EtOAc/C₆H₆). IR 1740 (β -lactam), 1680 (ketone), 1620 (ester).

Cyclization of 4b was achieved by heating in refluxing xylene for 40 min (23% yield after recycling recovered 4b once). IR 1780 (β -lactam), 1725 (ester), 1610 (C=C), 1525 (NO₂). NMR (300 MHz) 7.2-8.2 m (ArH), 5.68 (ABq, CH₂-Ar), 4.4 (m, C-5 H), 3.59 (dd, J = 15, J = 5, α C-6 H), 3.3 (octet C-1 H), 3.1 (dd, J = 15, J = 3, β C-6 H). UV $\lambda_{max}^{CH_2Cl_2}$ 268, 300 (ϵ = 5000, NH₂OH extinguishable).

Hydrogenolysis of **5b** (10% Pd/C, equal wt, dioxane-water 1:1, NaHCO₃, 1 eq, 40 lbs H₂ pressure, 20 min) gave **6b**. UV $\lambda_{max}^{H_2O}$ 297 (NH₂OH extinguishable), NMR (300 MHz, D₂O) 7.39 (ArH), 4.37 (m, C-5 H) 3.5 (dd, J_{gem} = 18, J_{5,6} = 5, C-6 α H), 3.23 (dd, J = 16, J = 9, C-1 α or β H), 3.16 (dd, J_{gem} = 18, J_{5,6} = 3, C-6 β H), 3.07 (dd, J = 16, J = 7, C-1 α or β H).

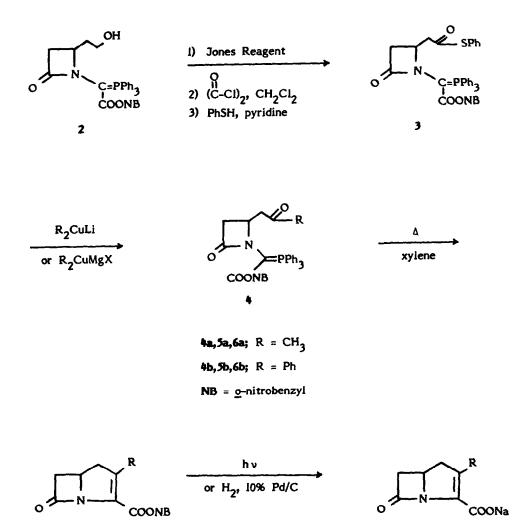

The antibacterial activity of **6a** could not be meaningfully determined because of its instability at the incubation temperature of 37° ; however, as shown in Table I, **6b** has activity superior to the thienamycin nucleus (**6**, R = H). Like the thienamycin nucleus, **6b** is susceptible to β -lactamases as shown by its lower activity against penicillinase producing strains.

TABLE 1

Inhibitory Zone Diameters (Millimeters)

vs. Penicillin-Sensitive and Resistant Bacterial Strains

Compound	Disc Content µg (nmol)	S. aureus		E. coli		Enterobacter Clocae	
		MB2985	MB2314	MB2482	MB2964	MB2647	MB2646
Ampicillin	10 (28)	33.5	13	20.3	0	18	0
6 (R = H)	8.2 (54)	20.5	0	20	0	21	16.5
6b	12.3 (49)	36	24	28.7	0	25.5	9.5

Acknowledgment. We thank Dr. Byron H. Arison and Mr. Herman Flynn for 300-MHz proton NMR spectra, Mr. Jack Smith for mass spectra, and Ms. Jean S. Kahan for the in vitro antibacterial assay.

References and Notes

- L. D. Cama and B. G. Christensen, "Total Synthesis of Thienamycin Analogs I," <u>J. Am. Chem. Soc.</u>, 100, 8006 (1978).
- See references 1 and 2 in "Total Synthesis of Thienamycin Analogs I" for isolation, bioactivity and structure of thienamycin.
- 3) R. J. Anderson, C. A. Henrich and L. D. Rosenblum, J. Am. Chem. Soc., 96, 3654 (1974).
- 4) IR spectra were run as thin film and are reported in cm^{-1} ; NMR spectra were run in CDCl₃ on a Varian T-60 instrument unless otherwise specified, and are reported in δ units.
- 5) A. J. G. Baxter, K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate, <u>J. C. S. Chem.</u> Commun., 236 (1979).
- 6) Compound 6a could not be lyophilized without considerable decomposition. IR and NMR spectra of 6a are therefore not available; its presence in aqueous solution is inferred from its UV maximum at 262 nm (NH₂OH extinguishable). Its yield is calculated using an assumed ε = 7800 similar to descysteaminyl-thienamycin, D. H. Shih, J. Hannah and B. G. Christensen, <u>J. Am. Chem. Soc</u>. 100, 8004 (1978).

(Received in USA 25 January 1980)